Refinement of the Alum Structures.
 I. X-Ray and Neutron Diffraction Study of $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} . \mathbf{1 2 H}_{2} \mathrm{O}$, a β Alum*

By Don T. Cromer
Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico, U.S.A. and Puerto Rico Nuclear Center, Mayaguez, Puerto Rico
M.I. KAY
Puerto Rico Nuclear Center, Mayaguez, Puerto Rico
and Allen C. Larson
Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico, U.S.A.

(Received 15 December 1965 and in revised form 31 January 1966)

The structure of $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$, a β alum, has been refined from three-dimensional X-ray diffraction data and neutron diffraction data from the $h k 0$ zone. The maximum shift in atom positions from those given by Lipson (1935) is only $0.04 \AA$. Criteria for classifying alums as α, β or γ types are discussed.

Introduction

The alums are a large class of double salts having the general formula $\mathrm{A}^{+} \mathrm{B}^{3+}\left(\mathrm{RO}_{4}\right)_{2} .12 \mathrm{H}_{2} \mathrm{O}$ where A can be $\mathrm{NH}_{4}, \mathrm{CH}_{3} \mathrm{NH}_{3}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$; B can be $\mathrm{Al}, \mathrm{Ga}, \mathrm{Cr}$, Fe, V; and R can be S, Se or $\mathrm{Te} . \mathrm{BeF}_{4}^{2-}$ alums are also known. These compounds are cubic, space group $P a 3$, although this symmetry can only be achieved statistically with the ammonium and substituted ammonium alums. The alums were all thought to be isomorphous until the X-ray work of Lipson (1935) showed that there are three different types which he named α, β and γ, in the order of their discovery.

The type of alum formed depends on the size of the monovalent cation. If the cation is small the γ alum forms. The only known representative of this class is $\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$. The β alum forms if the cation is large and the α alum, which is by far the most common type, occurs if the cation is of intermediate size. In all the alums there are two crystallographically different water molecules, each associated exclusively with either the monovalent or trivalent cation. The trivalent cation is always surrounded by six water molecules in a nearly regular octahedron but the orientation of the octahedron with respect to the cell axes is different in each of the three types. The monovalent cations in the α and γ alums also have six water molecules. In γ alum these water molecules form a nearly regular octahedron. In α alum the octahedron is distorted by compression along the threefold axis.

The large cation in β alums can accommodate 12 oxygen neighbors. To attain this large coordination number the water octahedron is compressed along the

[^0]threefold axis and stretched out normal to this axis until it is nearly planar. The two ends of the resulting trigonal antiprism are separated by only about $0.06 \AA$. The sulfate groups at each end of this antiprism are then moved along the threefold axis toward the central cation until six sulfate oxygen atoms are about the same distance from the cation as are the water molecules. A slightly distorted cubic close packed array of oxygen atoms thus surround the cation.

In the γ structure six water molecules approach the small sodium cation much more closely than in the α structure. This motion cannot take place unless the hydrogen bonding system changes. The most striking result is that the sulfate groups become oppositely oriented along the threefold axis.

Discussions of the relations among the three structures have been given by Lipson (1935) and by Jona \& Shirane (1962). None of the alums has been investigated by modern counting techniques although Okaya, Ahmed, Pepinsky \& Vand (1957) have studied methylammonium aluminum sulfate dodecahydrate (MASD) by photographic methods and refined the structure by least squares. Okaya et al. (1957) do not classify MASD in a particular structure type because 'the difference between α and β alum types is not adequately defined structurally'. On the other hand we believe that the three structure types may be clearly distinguished and that MASD is a member of the β alums. The characteristic that distinguishes the γ alums from the α and β alums is the orientation of the sulfate group. In the γ alums this group is oriented opposite to its orientation in the α and β alums. The β alums have twelvefold and the α alums have sixfold coordination of oxygen about the central monovalent cation. Okaya et al. (1957) probably overlooked this difference in coordination because the distances which they state are from the
center of gravity of the $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$ion are actually from the nitrogen or carbon atoms of the disordered ion.

We have investigated several of the alums by both X-ray and neutron diffraction methods. The present paper concerns the structural refinement of $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$, an example of the β alum type.

Experimental

Crystals for the X-ray study were grown from a water solution. Well formed octahedra, sometimes with small $\{100\}$ and $\{110\}$ forms developed, were readily obtained, and spheres were ground in a Bond sphere grinder. A sphere 0.16 mm in diameter was used in obtaining the intensity data. The lattice constant was measured with a carefully aligned single-crystal orienter on a General Electric XRD-5 X-ray diffraction unit and found to be $12.352 \pm 0.003 \AA$ (Mo $K \alpha_{1}=0.70926 \AA$) in reasonable agreement with $12.358 \pm 0.002 \AA$ reported by Lipson \& Beevers (1935). Mo $K \alpha$ radiation and $\mathrm{Zr}-\mathrm{Y}$ balanced filters were used in measuring the intensities within the range $2 \theta \leq 50^{\circ}$ by both the fixed crystal, fixed counter method and the 2θ scan method. Onefourth of the hemisphere was measured by the former technique and one-sixth by the latter. Thus, equivalent reflections were measured three times by the fixed crystal method and twice by the 2θ scan method. No absorption corrections were necessary $(\mu R=0 \cdot 19)$. The internal consistency of the data was estimated by forming the indices $R_{F}=\Sigma\left|F_{i}-\left(\overline{F^{2}}\right)^{\frac{1}{2}}\right| / \Sigma\left(\overline{F^{2}}\right)^{\frac{1}{2}}$ and $R_{F^{2}}=$ $\Sigma\left|F_{i}^{2}-\overline{F^{2}}\right| / \Sigma \overline{F^{2}}$ where the summations were taken over all reflections observed more than once. These values and the number of observations are given in Table 1. The internal consistency is better with the 2θ scan data but this is partly the consequence of comparing only two equivalent reflections rather than three. If the assumptions are made that the measurements are normally distributed, and that for the case of three equivalent measurements the mean is equal to the median, then R_{F} for two measurements should be about 1.5 times that for three measurements (Dixon \& Massey, 1957).

Table 1. Summary of observed X-ray data

	Number of non- equivalent reffections measured	Number observed	R_{F}	$R_{F 2}$
Fixed crystal	557	362	0.0199	0.0242
28 Scan	557	320	0.0097	0.0111

Reflections were considered observed if (I-Background $) \geq 3.0 \times(I+\text { Background })^{\frac{1}{2}}$. Because the contrast between the intensity and the background is greater for the fixed crystal method more reflections are observed by this technique.

For neutron diffraction studies larger crystals are necessary. Fine wires were suspended in a supersaturated solution of cesium alum and numerous small crystals formed on these wires. Most of the crystals were
scraped from the wires and the remainder were suspended in a saturated solution which was then allowed to evaporate slowly. An octahedron, 4 mm on an edge, was selected for study. The fine wire remaining inside the crystal was assumed to have a negligible effect on the neutron scattering. The crystal was briefly immersed in liquid nitrogen to increase its mosaic nature and thus reduce the effects of extinction. The neutron diffraction intensities of the $h k 0$ zone were measured with the single-crystal spectrometer at the Puerto Rico Nuclear Center. A wavelength of $1.06 \AA$ was used, and non-equivalent reflections within the range $2 \theta \leq 90^{\circ}$ were measured by step scanning. Of these, 64 were observed according to the criterion ($I-$ Background) \geq $2.0 \times(I+\text { Background })^{\frac{1}{2}}$. Because of the large incoherent scattering of hydrogen, absorption corrections were applied. The linear absorption coefficient for cesium alum is $4.31 \mathrm{~cm}^{-1}$. Calculated transmission factors were between 0.292 and 0.353 .

Refinement of the structure with X-ray data

The atomic positions given by Lipson (1935) were used as starting values for a full-matrix least-squares refinement of all non-hydrogen parameters. Anisotropic thermal parameters were used in the form

$$
\exp \left[-\left(B_{11} h^{2}+B_{22} k^{2}+B_{33} l^{2}+B_{12} h k+B_{13} h l+B_{23} k l\right)\right]
$$

The scattering factors of Cromer \& Waber (1965) were used for cesium, aluminum and sulfur, and that given in International Tables for X-ray Crystallography (1962) was used for oxygen. Since the anomalous dispersion for cesium is small, no correction was made. The quantity minimized was $\Sigma w\left(F_{o}-F_{c}^{*}\right)^{2}$. Two weighting systems were used, $u^{\prime}=w_{E}$ and $w=w_{E} /\left(F_{o}+0.02 F_{o}^{2}\right)$ where w_{E} is the weight based on counting statistics as given by Evans (1961).

$$
F_{c}^{*}=\frac{K F_{c}}{\left\{1+g\left[\frac{2\left(1+\cos ^{4} 2 \theta\right)}{\left(1+\cos ^{2} 2 \theta\right)^{2}}\right] L p F_{c}^{2}\right\}^{\frac{1}{2}}}
$$

where K is a scale factor, g is an extinction parameter (Zachariasen, 1963), Lp is the Lorentz and polarization factor, and F_{c} is the ordinary calculated structure factor. For unobserved reflections $w=0$. At the end of the refinements $\Delta \xi_{i} / \sigma\left(\xi_{i}\right)<10^{-3}$ for all parameters ξ.

Both sets of data were refined with both weighting systems and nearly identical results were obtained. However, when the modified weights, i.e. $w=w_{E} /\left(F_{o}+\right.$ $0.02 F_{o}^{2}$), were used the standard deviations were about 40% smaller, the $\mathrm{S}-\mathrm{O}$ bond lengths were more nearly the same and the parameters obtained from the two different data sets were in closer agreement. With either data set the maximum parameter difference as a function of weighting system was about one standard deviation but for most parameters was considerably less.

The values of the residuals, R, with unobserved reflections omitted are given in Table 2 for both the fixed crystal and 2θ scan methods. To our knowledge, no
detailed comparison of these two experimental techniques has appeared in the literature, at least not for a crystal as complex as a β alum. Cromer, Larson \& Roof (1960) compared results for CeCu_{6} obtained by the Evans (1953) method, which is a scan by moving the Weissenberg dial angle, ω, and by the fixed-crystal,

Table 2. R values for different sets of data
Fixed crystal

$w=w_{E}$	$0 \cdot 0394$	0.0380
$w=w_{E} /\left(F_{o}+0.02 F_{0}{ }^{2}\right)$	$0 \cdot 0354$	0.0528
2θ Scan		
$w=w_{E}$	0.0418	0.0356
$w=w_{E} /\left(F_{o}+0.02 F_{o}{ }^{2}\right)$	0.0375	0.0501
Neutron data $w=w_{E} /\left(F_{o}+0.02 F_{0}{ }^{2}\right)$	0.0744	0.0590

fixed-counter method. For various reasons, however, the CeCu_{6} data did not provide a good comparison of the fixed crystal and scan techniques. Consequently it is of interest to report here in detail the results obtained by using both of these experimental techniques.
Table 3 gives the final least-squares parameters for the two sets of data. In nearly all cases the parameter differences are smaller than a standard deviation. The thermal parameters obtained from the fixed crystal data, however, are systematically slightly larger, probably because at higher angles a small portion of the intensity is lost because of $\alpha_{1}-\alpha_{2}$ separation. This effect is not nearly as pronounced with the alum as it was with CeCu_{6} because with the alum the data were limited to $50^{\circ} 2 \theta$ whereas with CeCu_{6} the data extended to $90^{\circ} 2 \theta$. It is clear that the fixed-crystal method gives

Table 3. Least-squares parameters for $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} .12 \mathrm{H}_{2} \mathrm{O}$ from X-ray diffraction data
The upper numbers are from the fixed crystal data and the lower numbers from the 2θ scan data. $w=w_{E} /\left(F_{o}+0.02 F_{0}{ }^{2}\right)$ in both cases

Atom	x	y	z	$B_{11} \times 10^{5}$	$B_{22} \times 10^{5}$	$B_{33} \times 10^{5}$	$B_{12} \times 10^{5}$	$B_{13} \times 10^{5}$	$B_{23} \times 10^{5}$
Cs	0.5	0.5	0.5	428 ± 7	B_{11}	B_{11}	-88 ± 10	B_{12}	B_{12}
	0.5	0.5	0.5	404 ± 7	B_{11}	B_{11}	-84 ± 15	B_{12}	B_{12}
Al	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	218 ± 15	B_{11}	B_{11}	54 ± 36	B_{12}	B_{12}
	0.0	$0 \cdot 0$	$0 \cdot 0$	186 ± 15	B_{11}	B_{11}	18 ± 50	B_{12}	B_{12}
S	$0 \cdot 32867 \pm 15$	x	x	217 ± 9	B_{11}	B_{11}	59 ± 22	B_{12}	B_{12}
	$0 \cdot 32865 \pm 19$	x	x	211 ± 11	B_{11}	B_{11}	60 ± 31	B_{12}	B_{12}
$\mathrm{O}_{s}(1)$	$0 \cdot 25955 \pm 40$	x	x	402 ± 34	B_{11}	B_{11}	-220 ± 66	B_{12}	B_{12}
	$0 \cdot 25935 \pm 48$	x	x	384 ± 38	B_{11}	B_{11}	-241 ± 87	B_{12}	B_{12}
$\mathrm{O}_{s}(2)$	$0 \cdot 27893 \pm 42$	$0 \cdot 34108 \pm 42$	$0 \cdot 43637 \pm 40$	486 ± 43	340 ± 41	250 ± 38	143 ± 70	313 ± 67	91 ± 65
	$0 \cdot 27869 \pm 53$	$0 \cdot 34096 \pm 55$	$0 \cdot 43681 \pm 49$	484 ± 53	338 ± 54	212 ± 47	150 ± 93	331 ± 81	133 ± 82
$\mathrm{O}_{w}(1)$	-0.15928 ± 43	0.05065 ± 43	$0 \cdot 28465 \pm 40$	323 ± 40	366 ± 40	401 ± 39	10 ± 70	116 ± 69	25 ± 70
	-0.15917 ± 57	0.05129 ± 54	$0 \cdot 28488 \pm 52$	285 ± 53	358 ± 50	390 ± 50	-6 ± 89	162 ± 90	-5 ± 86
$\mathrm{O}_{w}(2)$	$0 \cdot 15236 \pm 41$	-0.00199 ± 37	0.00001 ± 40	203 ± 34	329 ± 38	399 ± 42	40 ± 69	103 ± 63	-3 ± 63
	$0 \cdot 15261 \pm 44$	-0.00209 ± 50	-0.00138 ± 56	187 ± 38	308 ± 42	385 ± 45	21 ± 101	50 ± 86	54 ± 91
g	$1.74 \pm 31 \times 10$								
	$1 \cdot 58 \pm 32 \times 10$								

Fig. 1. Neutron diffraction difference Fourier synthesis showing hydrogen atoms only. Contours are at equal arbitrary units. Heavy lines are positive contours, light lines negative and the zero contour is dotted.

Table 4. Observed and calculated structure factors for $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$

The column headings are $k, 10\left|F_{o}\right| / K$, and $10 F_{c}{ }^{*} / K$ (see text). If $\left|F_{o}\right|$ is negative the minus sign means 'less than'.

data that are quite satisfactory and, unless accurate thermal parameters are of particular interest, we prefer this method. More reflections are observed and thus the standard deviations of atomic positions are smaller. Also, the fixed crystal method is much faster. It takes perhaps one-fifth the time required by the scan method, although if a fully automated system is used this time differential may be unimportant.

Table 4 gives the observed and calculated structure factors for the fixed crystal data. A similar table for the 2θ scan data can be obtained from the authors.

Refinement of the structure with neutron diffraction data

Structure factors were calculated by using the parameters obtained from the X-ray analysis but without any hydrogen contribution. The structure factors were initially scaled so that $\Sigma F_{o}=\Sigma F_{c}$ and a difference Fourier synthesis was calculated. Approximate hydrogen positions were obtained and a least-squares refinement minimizing $\Sigma w\left(F_{0}-K F_{c}\right)^{2}$ was calculated where $w=$ $w_{E} /\left(F_{o}+0.02 F_{o}^{2}\right)$, the symbols having the same meanings as given above. Parameters in this refinement were isotropic temperature factors for each crystallographically different atom, the scale factor and coordinates of the hydrogen atoms. The sulfur and oxygen atoms were not allowed to move. Table 5 gives the final parameters, and Table 6 gives the observed and calculated structure factors. The R indices are in Table 2. Fig. 1 is a difference Fourier synthesis showing hydrogen atoms only.

Table 5. Least-squares parameters for $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ from neutron diffraction data
Equivalent isotropic thermal parameters from X-ray data are in parenthesis.

The interatomic distances and bond angles are given in Table 7. The errors were computed by using the entire variance-covariance matrix and include the trivial effect of lattice constant error. However, the errors in distances and angles involving hydrogen assume no error in the heavy atom positions. The anisotropic thermal parameters were transformed to obtain the thermal ellipsoid parameters which are given in Table 8.
The isotropic thermal parameters computed from the neutron data, except those for cesium and alumi-
num, are in good agreement with the isotropic parameters (Table 5) equivalent to the anisotropic parameters obtained from the X-ray data (Hamilton, 1959). The reason for the two exceptions is that cesium and aluminum are distinguished in projection only by their different scattering lengths and their different thermal parameters. Therefore the correlation between B_{Cs} and B_{Al} is large (-0.82) and is manifest in the relatively large standard deviations of these two parameters.

The octahedron about aluminum is oriented almost exactly along the cell axes and is only very slightly distorted. The $\mathrm{Cs}-\mathrm{O}_{s}(2)$ distances are a little longer than the $\mathrm{Cs}-\mathrm{O}_{w}(1)$ distances, $3.454 \AA$ vs $3.367 \AA$. The analogous distances in MASD are $3.42 \AA$ to $\mathrm{O}_{s}(2)$ and $3.61 \AA$ to $\mathrm{O}_{w}(1)$.

The sulfate group is an almost perfect tetrahedron. Rigid body analysis of the sulfate group was carried out by the method of Cruickshank (1956) using a code written by Trueblood (1962). The τ and ω matrices are in Table 9. Corrections to the $\mathrm{S}-\mathrm{O}$ distances were computed according to the in phase assumption of Busing \& Levy (1964). The S-O distances before and after correction are given in Table 7. These distance agree well with other recent accurate determinations
which have been tabulated by Larson (1965). The direction of maximum motion of $\mathrm{O}_{s}(1)$ is normal to the $\mathrm{S}-\mathrm{O}$ bond. The largest axis of the $\mathrm{O}_{s}(2)$ thermal ellipsoid makes an angle of 85.7° with the $\mathrm{S}-\mathrm{O}$ bond and the smallest axis makes an angle of $9 \cdot 1^{\circ}$ with the bond.

There is only one possible system of hydrogen bonding in this structure. All hydrogen atoms take part in hydrogen bonds and all oxygen atoms except $\mathrm{O}_{w}(2)$ have at least one hydrogen bond. The hydrogen positions could be reasonably guessed from the heavy-atom locations obtained by X-rays. Hydrogen atoms could be clearly observed in a three-dimensional difference Fourier synthesis computed with reflections having $\sin \theta / \lambda<0.4 \AA^{-1}$. The $\mathrm{O}-\mathrm{H}$ bond lengths were corrected for thermal motion according to Busing \& Levy (1964) by using the isotropic thermal parameters obtained from the neutron diffraction data. These distances, before and after being corrected, are given in Table 7 and agree well with other neutron diffraction analyses of hydrated crystals. $\mathrm{H}(1)$ on $\mathrm{O}_{w}(1)$ is bonded to $\mathrm{O}_{s}(1)$ and this oxygen atom, being on a threefold axis, is bonded to three $\mathrm{H}(1)$ atoms. A somewhat elongated trigonal pyramid consisting of the three hydrogen

Table 6. Observed and calculated neutron diffraction structure factors, $\times 100$, for $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} .12 \mathrm{H}_{2} \mathrm{O}$
If $\left|F_{o}\right|$ is negative the minus sign means 'less than'

k	$\left\|F_{o}\right\|$ $h=2$	F_{c}	k	$\left\|F_{o}\right\|$ $h=6$	F_{c}	k	$\left\|F_{o}\right\|$ $h=10$	F_{c}	k	$\begin{gathered} \left\|F_{o}\right\| \\ h=1 \end{gathered}$	F_{c}
0	215	172	0	1217	1156	0	900	-975	0	758	890
1	913	908	1	-342	80	1	-431	362	1	684	580
2	913	919	2	2757	2744	2	440	495	2	-502	261
3	-286	-98	3	600	-686	3	564	-614	3	-500	227
4	413	400	4	694	728	4	802	-654	4	-431	-277
5	830	813	5	383	-397	5	-380	- 122	5	624	546
6	-336	179	6	1753	1686	6	1584	1584	6	703	737
7	-350	314	7	419	-456	7	471	-485	7	364	334
8	672	701	8	512	325	8	814	924	8	398	385
9	-367	-550	9	385	-431	9	-468	289			
10	871	935	10	-412	279	10	-397	201			
11	783	-743	11	-419	-486	11	-464	443			
12	-389	-175	12	875	934	12	-466	697			
13	499	-512	13	-428	79	13	-415	107			
14	1017	1110	14	640	554						
15	-403	-253	15	-421	-212						
16	-439	244									
	$h=4$			$h=8$			$h=12$			$h=1$	
0	-311	31	0	560	680	0	1558	1512	0	537	-384
1	565	-528	1	-392	-269	1	606	- 556	1	-463	-248
2	505	-493	2	2284	2304	2	1198	1265	2	568	- 529
3	494	-510	3	973	1039	3	-399	179	3	-454	-9
4	450	-530	4	- 397	-76	4	861	813	4	466	303
5	879	-875	5	547	528	5	-476	23			
6	845	836	6	1040	1002	6	455	377			
7	1177	-1089	7	554	560	7	-473	166			
8	1241	1310	8	921	957	8	-412	-51			
9	-385	126	9	-426	115	9	395	148			
10	387	-461	10	-387	-306	10	-396	5			
11	-393	266	11	421	-455	11	-399	174			
12	936	816	12	848	860						
13	-403	-78	13	-443	-132						
14	416	355	14	-428	141						
15	-413	80									
16	580	-616									

Table 7. Interatomic distances and angles in $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} .12 \mathrm{H}_{2} \mathrm{O}$ from fixed crystal and neutron diffraction data Standard deviations, in parentheses, apply to the rightmost digit Distances corrected for thermal motion are in parentheses

Table 8. Thermal ellipsoids in $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} .12 \mathrm{H}_{2} \mathrm{O}$, fixed crystal data

Atom Cs	r.m.s.	B_{i}	Direction angles relative to crystal axes		
	amplitude		α	β	γ
	$0 \cdot 162 \pm 3 \AA$	$2.08 \pm 7 \AA^{2}$	54.7°	54.7°	$54.7{ }^{\circ}$
	$0 \cdot 191 \pm 2$	$2 \cdot 88 \pm 5$	-		
	$0 \cdot 191 \pm 2$	$2 \cdot 88 \pm 5$	-	-	-
Al	$0 \cdot 145 \pm 11$	$1 \cdot 66 \pm 25$	$54 \cdot 7$	$54 \cdot 7$	$54 \cdot 7$
	$0 \cdot 122 \pm 7$	$1 \cdot 17 \pm 14$	-	-	-
	$0 \cdot 122 \pm 7$	$1 \cdot 17 \pm 14$	-	-	
S	$0 \cdot 146 \pm 7$	$1 \cdot 68 \pm 15$	54.7	$54 \cdot 7$	54.7
	$0 \cdot 120 \pm 5$	$1 \cdot 14 \pm 9$	-	-	
	$0 \cdot 120 \pm 5$	$1 \cdot 14 \pm 9$	-	-	
$\mathrm{O}_{s}(1)$	$0 \cdot 119 \pm 22$	$1 \cdot 11 \pm 42$	$54 \cdot 7$	$54 \cdot 7$	$54 \cdot 7$
	$0 \cdot 199 \pm 10$	$3 \cdot 13 \pm 32$	54	54	54
	$0 \cdot 199 \pm 10$	$3 \cdot 13 \pm 32$	-	-	-
$\mathrm{O}_{s}(2)$	$0 \cdot 214 \pm 9$	$3 \cdot 63 \pm 29$	33 ± 5	72 ± 7	
	$0 \cdot 155 \pm 10$	1.91 ± 25	108 ± 9	19 ± 7	95 ± 13
	$0 \cdot 118 \pm 12$	$1 \cdot 10 \pm 23$	116 ± 6	93 ± 13	26 ± 5
Ow ${ }_{\text {(1) }}$	$0 \cdot 150 \pm 10$	$1 \cdot 78 \pm 25$	28 ± 14	89 ± 28	118 ± 13
	$0 \cdot 168 \pm 9$	$2 \cdot 22 \pm 25$	96 ± 28	11 ± 28	99 ± 28
	$0 \cdot 183 \pm 9$	$2 \cdot 66 \pm 27$	63 ± 13	79 ± 27	30 ± 14
$\mathrm{O}_{w}(2)$	$0 \cdot 120 \pm 11$	$1 \cdot 15 \pm 21$	16 ± 9	98 ± 14	104 ± 8
	$0 \cdot 160 \pm 9$	$2 \cdot 02 \pm 23$	83 ± 15	8 ± 14	94 ± 22
	$0 \cdot 178 \pm 9$	$2 \cdot 51 \pm 26$	76 ± 8	88 ± 22	14 ± 10

Table 9. Translation and torsional vibration matrices for the sulfate group relative to the unit cell axes

$$
\begin{aligned}
\tau & =\left(\begin{array}{lll}
0.0160 & 0.0015 & 0.0015 \\
& 0.0160 & 0.0015 \\
& & 0.0160
\end{array}\right) \AA^{2} \\
\sigma \tau & =\left(\begin{array}{lll}
0.0020 & 0.0017 & 0.0017 \\
& 0.0020 & 0.0017 \\
& & 0.0020
\end{array}\right) \AA^{2}
\end{aligned}
$$

atoms and the sulfur atom thus surrounds $\mathrm{O}(1) . \mathrm{H}(2)$ on $\mathrm{O}_{w}(1)$ and $\mathrm{H}(3)$ on $\mathrm{O}_{w}(2)$ are bonded to $\mathrm{O}_{s}(2)$. These hydrogen atoms and the sulfur atom are nearly coplanar with $\mathrm{O}_{s}(2) . \mathrm{H}(4)$ on $\mathrm{O}_{w}(2)$ is bonded to $\mathrm{O}_{w}(1)$. The angles involving $\mathrm{H}(1), \mathrm{H}(2)$ and $\mathrm{H}(4)$ about $\mathrm{O}_{w}(1)$ are nearly tetrahedral.

Hamilton (1962) has given an empirical relation between $\mathrm{O}-\mathrm{O}$ hydrogen bond lengths and $\mathrm{O}-\mathrm{H}$ bond lengths or $\mathrm{O}-\mathrm{H}-\mathrm{O}$ angles. His empirical functions and the present experimental values are plotted in Fig.2. The present $\mathrm{O}-\mathrm{H}$ distances are systematically smaller than predicted but the differences are within the standard deviation of the measurement and the standard deviation of the prediction of the empirical function. There is no systematic trend in the $\mathrm{O}-\mathrm{H}--\mathrm{O}$ angles, all of which are nonlinear, but again the differences between the present experimental values and the empirical curve are not significant.

Fig.2. Plot of $\mathrm{O}-\mathrm{H}$ distance vs $\mathrm{O}-\mathrm{O}$, the hydrogen bond distance (circles) and $\mathrm{O}-\mathrm{H}-\mathrm{O}$ angle vs $\mathrm{O}-\mathrm{O}$ distance (triangles). The upper line is the empirical function for $\mathrm{O}-\mathrm{H}$ distance and the lower line is the empirical function for $\mathrm{O}-\mathrm{H}-\mathrm{-}$ O angle (Hamilton, 1962).

ω	$=\left(\begin{array}{rrr}29.2 & -8.8 & -8.8 \\ & 29.2 & -8.8 \\ & 29.2\end{array}\right) \mathrm{deg}^{2}$
$\sigma \omega$	$=\left(\begin{array}{rrr}5 \cdot 1 & 3.9 & 3.9 \\ & 5.1 & 3.9 \\ & & 5.1\end{array}\right) \mathrm{deg}^{2}$

Although the present results are of considerably greater accuracy than those of Lipson (1935), the maximum shift in atomic position is only $0.04 \AA$.

Except as noted, all calculations were performed on an IBM 7094 computer using codes written by Larson, Roof \& Cromer (1963, 1964, 1965). Fig. 1 was drawn by an SC-4020 microfilm plotter.

References

Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142.

Cromer, D. T., Larson, A. C. \& Roof, R. B., Jr. (1960). Acta Cryst. 13, 913.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.

Cruickshank, D. W. J. (1956). Acta Cryst. 9, 754.
Dixon, W. J. \& Massey, F. J., JR. (1957). Introduction to Statistical Analysis p.405, Table 8b(2). New York: McGraw-Hill.
Evans, H. T. (1953). Rev. Sci. Instrum. 24, 156.
Evans, H. T. (1961). Acta Cryst. 14, 689.
Hamilton, W. C. (1959). Acta Cryst. 12, 609.
Hamilton, W. C. (1962). Ann. Rev. Phys. Chem. 13, 28.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Jona, F. \& Shirane, G. (1962). Ferroelectric Crystals. International Series of Monographs on Solid State Physics, Vol.I., 335. Oxford: Pergamon Press.
Larson, A. C. (1965). Acta Cryst. 18, 717.
Larson, A. C., Roof, R. B., Jr. \& Cromer, D. T. (1963, 1964, 1965) Los Alamos Scientific Laboratory Reports, LA-2974, 3043, 3233, 3198, 3259, 3309, 3310.
Lipson, H. (1935). Proc. Roy. Soc. A151, 347.
Lipson, H. \& Beevers, C. A. (1935). Proc. Roy. Soc. A148, 664.

Okaya, Y., Ahmed, M. S., Pepinsky, R. \& Vand, V. (1951). Z. Kristallogr. 109, 367.

Trueblood, K. N. (1962). I.U.Cr. World List of Computer Programs. 1st ed. Groningen.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

[^0]: * Work performed under the auspices of the U.S. Atomic Energy Commission.

